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ABSTRACT 
The Tate-Farrell  cohomology of GL(n, Z) with coefficients in Z/p is com- 
puted for p an odd prime and p - l < n =< 2p - 3. Its size depends on the 
Galois structure of the class group of  the cyclotomic field Q(PxfT) and is shown 
to be quite large in general. 

Let p be an odd prime number. The mod p cohomology of GL(n, Z) and its 
subgroups of finite index interests us for several reasons. It is closely connected 
with the K-theory of Z. According to work of Dwyer and Friedlander [DF], 
the stable mod p cohomology of GL(n, Z) should be predictable from the 
Lichtenbaum conjecture. Hence an independent determination of the low di- 
mensional cohomology of GL(n, Z) with large n could test the conjecture. 

A second reason is connected with Serre's conjecture [Se] about represen- 
tations of the Galois group of the algebraic closure of Q into GL(2, Z/p). These 
are supposed to be attached to modular forms and determined by the action of 
the Hecke algebra mod p. The Hecke eigenvalues of classical modular forms of 
weight 2 can be determined from the mod p cohomology of congruence sub- 
groups of GL(2, Z). We would like to study the natural generalization of this 
conjecture to larger n. The interesting dimensional cohomology here is in the 
"cuspdal range" clustered around n(n + 1)/4. Another good question is 
whether p-torsion in the integral cohomology will yield nontrivial Galois 
representations. 

The link between the cohomology of GL(n, Z) and the topology of the set of 
lattices in n-dimensional euclidean space E" gives a third reason. Using this 
link, Soule [So] computed completely the cohomology of GL(3, Z). For big n, 

t Research partially supported by NSF Grant  No. DMS-8701758. 
Received August 4, 1988 

327 



328 A. ASH Isr. J. Math. 

it is unlikely that either the cohomology or the lattices will ever be completely 
understood, but they should shed partial light on each other, as for instance in 
[A l ]. The rood p cohomology in particular will be connected with the subset of 

lattices that possess an automorphism of order p. 
Unfortunately, it seems to be very hard to come to grips with the mod  p 

cohomology of GL(n, Z) in general. As a preliminary approach to the problem, 
in this paper we will determine the Farrell cohomology ofGL(n,  Z) with trivial 
coefficient module Z/p  for n < 2p - 2. (The same techniques could be used 
with any coefficient module.) The Farrell cohomology HF* is a generalization 
of  Tate cohomology to groups of finite virtual cohomological dimension (vcd). 
The Farrell and ordinary cohomologies of GL(n, Z) coincide above the 
vcd o = n (n - 1)/2. Below o, there is a map from H* to HF* which fits into a 
long exact sequence whose third term is the homology of GL(n, Z) with 

coefficients in the Steinberg module. Mark McConnell and I (work in progress) 
have shown that in positive dimensions below the vcd, roughly half of the 
Farrell cohomology lifts to the ordinary cohomology, a surprising result in 
view of the large size of the former, as seen in Theorem A below. 

Using a spectral sequence due to K. Brown [B], the Fan-ell cohomology is 
completely determined by the normalizers of cyclic subgroups of order p in 
GL(n, Z). We find these normalizers in the first section, and derive Theorem A 

in the next section. 

TrIEOREM A. L e t p b e a n  oddpr ime,p  - l < n < 2p - 3, m = n - p + 1. 

Set 71 = GL(m, Z) and 72 = {ME71 ]first row ofM~=(*,  0 . . . . .  0) mod p}. 
Let F be the finite field with p elements, K the cyclotomic extension o f  Q 
generated by a primitive p-th root o f  unity, and Cl the ideal class group o f  K. For 
any x ~ Cl, let s(x) denote the order o f  the stabilizer o f  x in A = GaI(K/Q). Let 
W(x,  b, c) denote an F- vector space whose dimension is the number o f  subsets I 
with c element of{2, 4 . . . . .  (p  - 3)} such that s(x) divides (Et i -4- the greatest 

integer in (b -4- 1)/2). 
Denote Farrell cohomology by HF*. For any t E Z ,  choose T E Z  such that 

T ~- t mod(2p - 2) and T > n (n - 1)/2 = vcd(GL(n, Z)). Then for all t E Z, 

HF*(GL(n, Z), F) -- ~ )  ~ )  ~ )  Hd(yi, F ) ~  W(x, b, c). 
x~CI/A j~ l ,2  b + c + d ~ T  

In the special case n = p - l, m = 0, we understand 7t = { l } and Hd(y2, F) = 0 

for all d. 

One thing to notice about the Farrell cohomology is the dependence on the 
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Galois structure of the ideal class group of the cyclotomic field K. The more 

classes and the smaller their stabilizers, the larger the Farrell cohomology. For 

large p, this means we may expect many unusual classes also in the ordinary 

cohomology of Gl(n, Z). 
A second point of interest is that the ordinary cohomology (below the vcd) of 

Hecke-type congruence subgroups of GL(n - p + 1, Z) of level p begins to 

appear when n > p. Any alternative computation of the Farrell cohomology 

would then give information about this ordinary cohomology as well. In the 

work of McConnell and myself mentioned above, we are developing such 

alternatives in terms of the geometry of the space of lattices in E'. 

In the last section we make some easy comparisons with the ordinary mod p 

cohomology of GL(n, Z) and its torsion-free congruence subgroups. 

I wish to thank W. Sinnott for information about the Galois action on ideal 

class groups and R. Gold for providing the proof of Lemma 3. 

1. Subgroups of order p in GL(n, Z) 

Let ~ be a primitive p-th root of unity, fixed once for all. Set K -- Q(~) 

and U = the units in Z[Q. IfA is a fractional ideal in K, [A] shall denote its 

ideal class. Let h be the Galois group of K/Q and/~ the group of order p 

generated by ~. 
Our first task is to describe all Z/~-modules up to isomorphism. First we have 

the trivial module Z and any fractional ideal A of K. We can also form an 

indecomposable module M out of Z, A and an arbitrary element a ~A as 

follows. Let Zz be a free Z-module and set M = A (B Zz as abelian group. # 
acts on A in the usual way, and we set (z = a + z. We denote the module M 

by the symbol (A, a). The following theorem and its proof may be found in 

[CR, p. 508]. 

THEOREM 1. Any Ztz-module M which is free and finitely generated as a 
Z-module is isomorphic to a direct sum 

( A , , a l ) ~ . . .  @(Ar, ar )@Ar+,~""  ~ A k ~  Y 

where the Ai are fractional ideals in K, ai EA~, ag ~ ( ~ - 1)A~ and Y is a trivial 
Zlz-module. The isomorphism class of  M is determined by the integers r, k, and 
the Z-rank of Y, and by the ideal class of the product At. • " Ak. 

Now suppose the Z-rank of M to be n, where n shall be fixed and less than 

2p - 2. It follows that the only possibilities for Mare of the form Y, A ~) Yand 
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(A, a)E) Y. In the last case we may and will choose a in Q. From now on we 

assume that M is faithful, which eliminates the first possibility. Choosing a Z- 

basis for M we obtain an embedding p : p ~ GL(n, Z) and we wish to deter- 

mine the normalizer of  the image ofp.  Note that Im Pl is conjugate to Im P2 if 

and only if for some a in A, Pl ° a is isomorphic to P2. This is the reason that the 

first direct sum in Theorem A is over the A-orbits of  CI rather than C1 itself. 

For any m > 1, set ?(m) = GL(m, Z). We adopt the notation ~,(m, p) for the 

subgroup of 7(m) whose first row is congruent to (*, 0 , . . . ,  0) modulo p. We let 

2 stand for the homomorphism 7(m, P) ~ (Z/p) × sending such an element to * 

modulo p. By convention, we set 7(0) = 7(0, p) = { 1 ). 

THEOREM 2. Let the image of  p have normalizer N and centralizer C. 

Denote by S the stabilizer of  the ideal class [A ] in the Galois group A. Then there 

is an exact sequence 

1 - - ' C ~ N ~ S ~ I .  

To describe this further, we distinguish two cases: (1) M ~ A G) Y and (2) 

M ~ (A, a )@ Y. Set m = n - p + 1. In Case 1 we set 7 = 7(m) and, in Case 2, 

7 = ~,(m, p). In either case let No be the semidirect product of U X ~, and S, 

where S acts trivially on ~, and via the Galois action on U. Thus, the group law 

in No is given by the formula (~, 5, a)(~', 5', z) = (~a(~'), 5g', az). Then Nis  a 
subgroup of No and the map from N to S is induced by the obvious projection. 

Finally, we have 

Case 1: N ,~ No. 
Case 2: N ~- ((~, 3, a)ENol~---2(5)s mod( (  - 1)}, where a and s are 

related by the formula a ( ( )  = (s  for s E(Z/p)  × 

We remark that ~, is embedded into the automorphism group of  M in a 

natural way: in Case 1 as the automorphism group of  Y and in Case 2 as the 

automorphism group of  the Z-span of  z and Y. 

We begin the proof of  the theorem by observing that there is a natural 

isomorphism from N to the group {¢ E I somz(M, M)[  ¢(q~-' = a ( ( )  for some 

t~ E A} which maps C to the subgroup of  ¢ for which a = 1. We identify N and 

C with these sets for the rest of the proof. We have an obvious exact sequence 

1-~ C ~ N  ~ A. The following lemma will determine the image of  the last 

arrow. 

LEMMA 3. Suppose M = A and c E N  with ~ - 1  = a( ~). Then [A] = [aA] 
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in the ideal class group. Conversely if[A] = [~rA] for some cr E A, there exists 

O E N  sueh that q)~(9 -~ = cr( ~). 

PROOF (R. Gold). Let q~ be given. Then ~q~-  ~ = multiplication by a(if) on 

A. On the other hand, viewing a EIsomz(A,  aA), we have a~a - ~ =  

multiplication by a(~) on a(A). But QA = QaA = K. Then q~ff~-i = a ~ a - l ~  

Isomo(K, K) so that a -  ~0 is a Q-isomorphism of K which commutes with if, 

hence with any polynomial in ~, i.e. with anything in K. Thus a-1¢~ must be 

multiplication by some element x E K. So xA = a-I(~A = a-~A which implies 

that [A ] = [aA ]. 

Conversely, if [A ] = [aA ], there exists x ~ K such that xA = a -  1A. Then 

0 = a o (mult. by x) is easily seen to lie in N and ~ - ~  = a(~). 

LEMMA 4. Suppose M = A and q)~ C. Then q) is given by multiplication by 

some element o f  U. 

PROOF. In the notation of  the proof of  Lemma 3, a = 1 and ~ must be 

multiplication by some x E K. Since xA = A, we must have x E U. 

To continue the proof of  the theorem, we introduce the notation M u for the 

fixed points of/z in M, v for the sum of  the elements of/ t  in the group ring Z, 

and M[v] for the kernel of  v acting on M. Note that q~EN implies that 

q~/t~- ~ =/~ so that q~ preserves both M u and M[v]. 

In Case 1, M u --- Y and M[v] = A. Hence any q~ ~ N preserves both A and Y. 

The statement of the theorem in this case now follows from Lemmas 3 and 4. 

Case 2 is considerably more complicated. Again we have M[v] = A .  The 

following lemma determines M ~. 

LEMMA 5. The lt-invariants in (A , a) are rank 1, spanned by b + pz , where 

b = - p ( ( -  1) - ' a .  

PRoov. If x E A  and t E Z ,  compute ~ ( x + t z ) = ~ x + t ( a + z ) =  

( ~x + ta ) + tz. So x + tz ~ M u iff (x  + ta = x iff ta = - ( ~ - l)x. Since 

a ~ ( ~ - I)A, we must have p dividing t. Then x is a multiple of  b and t is the 

same multiple of  z. 

Now any O E N  preserves M [ v ] = A  and M u = ( b + p z ) ~ Y .  Let R = 

(z) ~ Y, so that M = A ~ R  as abelian groups. We can write ~ = a + fl + 5, 

where a G I s o m z ( A , A ) ,  f l ~ H o m z ( R , A ) ,  and 5 E I s o m z ( R , R )  with 

~Y C p ( z ) ~ Y .  Then q~-~ = ~ - 1  + ( _ a - l f l 5  -~) + 5  -1 
Suppose ¢~0 -I = a(~) = ~s. Then on A we have a ~ a - ~ =  a(~), so that by 
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Case 1 of  the theorem (with Y = 0) we get for x EA that a(x) = ~tr(x) for some 
~ U. Then a - l ( x )  = (7-  l ( ~ - l x ) .  

Now suppose r ~ R ,  r = cz + y  and J - t ( r )  = dz + y* where c, d ~ Z .  Then 

¢)(0-1(r) = f~[ - ot-lflJ-l(r) + J- l ( r ) ]  

= ¢[ -- ~a-lf lJ-~(r)  + da + J -  ~(r)] = (1 - ~s)pJ-~(r) + da(a) + r. 

On the other hand, this is supposed to equal the result of  ( applied s times to r, 

namely, cuba +r ,  where u~ denotes the circular unit ( 1 -  ~s ) / (1 -  ~ ) =  

1 + . . .  + ~-~.  Since a E Q ,  we obtain that (1 - ;s)f lJ- l(r)  + d~a = cuba. 

Since J is an isomorphism, this shows that fl will be determined uniquely by a, 

J and a. Conversely, given a, J and a we can define fl and hence ~ satisfying the 

previous equations, if and only if 1 - ~ divides cu~ - d~ for every choice of  r 

(since 1 - ~s does not divide a). If this is so for r's of  the form z + y it will be so 

for all r. So we shall set c = 1. 

Our condition for the existence of  ¢ given a, J and a is that s------uo ~ d ~  

mod( ( - l). Extending {z} to a Z-basis of  R,  we can express J as a matrix in 

?(m, p) so that d -l ~C~lt  = 2(C~). Our condition then becomes ,~(g)s ~ as 

claimed. 

2. Farrell cohomology 

Conjugacy classes of subgroups of  order p in F = GL(n, Z) are in one-to-one 

correspondence with isomorphism classes of  ZIx-modules which are free of  

rank n as Z-modules. Assume n < 2p - 2 so that every elementary abelian 

p- subgroup of  F has rank 0 or I. Denote the p-part of  the Farrell cohomology 

of F with coefficients in the ZF-module E by HF*(F, E)tp). Then Theorem 6.7 

and Corollary 7.4 in Chapter X of [B], imply the following: 

THEOREM 3. Recall that n < 2p - 2. Then 

(1) F and each o f  its subgroups has p-periodic Farrell cohomology; 

(2) HF*(F, E)~pj ~ ( ~  HF*(N(P), E)tp ), where the direct sum runs over a set 

o f  representatives { P } for the conjugacy classes o f  subgroups o f  order p in F and 
N(P) denotes the normalizer o f  P in F. 

If n < p - 1, there are no P 's  and HF*(F, E)tp ) vanishes. Hence we will 

assume from now on that p - 1 < n < 2,0 - 3. From the results in Section 1 

we know that {P} can be indexed by a set of  representatives {A } of  the ideal 

class group of  K = Q(() .  For each A, define N(A) (resp. N'(A)) to be the 

normalizer N appearing in Case 1 (resp. Case 2) of  Theorem 2 of  Section 1. If  
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n --- p - 1, we do not define N'(A) and omit terms referring to it in what 

follows. We then have immediately: 

COROLLARY 4. HF*(F, E)tp)~ (~) [HF*(N(A), E)tp)~ HF*(N'(A ), E)tp) ]. 

We must now evaluate the terms on the right hand side. Since the Farrell 

cohomology is p-periodic, we may without loss of generality assume that * 

exceeds the virtual cohomological dimension of F. Then the Farrell cohomo- 

logy equals the ordinary cohomology and we may drop the letter F as long as 

this assumption about * is in force. 

Fix A and let N be N(A) or N'(A). Apply the Hochschild-Serre spectral 

sequence to the exact sequence in Theorem 2, to obtain 

E~" = Hs(S, Ht( C, E))(p)=* HS +t(N, E)(p). 

Since the order of S is prime to p, this reduces to H°(S, Ht(C, E)(p))= 
Ht(N, E)(p). Since we know C so explicitly, in particular cases we should be 

able to compute the left hand side. 

There are two obstacles to going on at this point. First, we don't know much 

about the cohomology of ~, even with trivial coefficients, except for some weak 

lower bounds. Second, we don't completely know the structure of U as ZA- 

module. 
To obtain more explicit results, we assume that E is the finite field F with p 

elements, viewed as a trivial module for A. We can then drop the (p)- 

subscripts. We have an exact sequence of A-modules 1 ~ # - ~  U-- -U ' -~  1, 
where U' ~ Z (p-3)/2 × Z/2. As a sequence of Z-modules it splits, so we choose a 
splitting and view U' as a subgroup of  U. We then have an exact sequence of A- 
modules 1 -~# - - -C-~  C' ~ 1, where C' is a p-torsionfree subgroup of C such 

that C is the direct product/ t  × C' as groups, although not as A-modules. In 

Case 1, C' = U' × 7. In Case 2, the fact that ff ~-- 1 rood(1 - if) allows us to set 

c ' =  1) N01 U' and ~-----2(8) mod(~ - 1)}. 

In any case, the Hochschild-Serre spectral sequence degenerates and we get 

the isomorphism of S- modules: 

Hi(C, F) ~ ~ )  Ha(C ", Hb(I z, F)). 
a + b ~ t  

For any integer m, let us write m '  for the largest integer contained in 

(m + 1)/2: Let F[m] denote F viewed as A-module where t r~A acts by the 
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formula a .x = s"x when t r ( ( ) =  (s. Then it is easy to see that Hb(g, F) 

F[b'] as A-modules. 
Now use the Kunneth formula to compute the cohomology of C'. In Case 1 

C' is U' × 7. In Case 2 the index of C' in U' × 7 is prime to p and a set of 

representatives of the quotient can be found in U' × { l }. Since U' is abelian, 

from the Hochschild-Serre spectral sequence we get Ha(C',F) = 
Ha(u ' × y, F). Thus in both cases we have 

Ha(C',F)m (~ Hc(U',F)®Hd(7, F). 
c + d = a  

Now A acts trivially on the second tensor factor. As for the first, write 

Hom(U', F) = V. Since the cohomology of U' mod p is that of  a torus of rank 
(p - 3)/2, we have Hc(U ', F ) ~  At(V) as A-module. From Propositions 8.10 

and 8.13 of chapter 8 in [W], we have that V ~  (~)e=E,4,6,._,~p-3)F[e]. 

Putting this all together we have: 

Ht(C,F) .~ ~ Ha(C',F[b']) "~ ~ @ Hc(U',F)®Hd(y,F)~F[b '] 
a + b = t  a + b = t  c+d=a  

(~ Ae( (~ F[e])®F[b']~Hd(,,F). 
b + c + d = t  \ e = 2 , 4 , 6 , . . . , ( p  - 3 )  

Now the S-invariants in this give Ht(N, F). Note that S acts trivially on 
Hd(7, F).  Letting # S  denote the number of elements in S, we see easily that S 

acts trivially on F[m] if and only if # S  divides m. Therefore we have proved: 

THEOREM 5. With notation as above, let W(b, c) denote an F- vector space 
whose dimension is the number of subsets I with c elements of(2, 4 , . . . ,  (p - 3)} 

such that # S  divides b' + Zi i. Then 

H'(N, F) ~ (~) Ha(~, F) ® W(b, c). 
b + c + d = t  

As a supplement, we prove: 

LEMMA 6. The right hand side in Theorem 5 is eventually periodic in t of 
period 2( p - l). 

PROOF. Let r = ( p -  1)/2. Suppose t > v c d ( 7 ) +  r. Since 7 has no p- 

torsion, Ha(y, F) vanishes for d >vcd(y) .  Obviously W(b, c) vanishes if 

c > r - 1. Hence the right hand side may be written 
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~ )  ~ )  Ha(?, F)® W ( t  - c - d ,  c ) .  
c = 0 , . . . , r -  1 d=0, . . . ,vcd(?)  

Now W(b, c) = W(b + 4r, c), since (b + 4r)' = b' + 2r, and # S  divides 2r. 

We remark that we could strengthen the lemma to give the period at twice 

#S .  However, we wanted to state a result independent of the ideal class [A ]. If 

we take this periodicity into account for each choice of A, and apply this to 

Corollary 4, we obtain the full determination of HF*(F, F). This gives 

Theorem A of  the introduction. 
The result simplifies if n = p - 1 or p, for then ? = ( 1} or ( +_ 1 }. A very 

simple summand then occurs for an ideal class A whose Galois stabilizer S is 

trivial. In such a case, W(b, c ) =  number of  subsets of  c elements in I 

independently of b, and Hd(7, F) = 0 except when d = 0, so that as long as 
t ~> 0, Hi(N, F) is a vector space of dimension 2 (p-3)/2, independently of t. So 

this summand has period 1 in t. Thus we have the simple 

COROLLARY 7. Let n = p -- 1 or p and suppose K = Q((p) has an ideal 

class fixed only by the identity in Gal(K/Q). Then for any t ~ Z ,  

dim HU(F,  F) > 2 ~p-2)/3. 

The existence of a class with trivial stabilizer seems to be a common 

property of primes. In fact, for any field F let H(F) denote its class group and 

h(F) the order of H(F). Let c denote complex conjugation, and K = Q((p) as 

usual. 

LEMMA 8. Let x E H ( K )  o f  prime order l be such that c(x) = - x.  Assume 

that I does not divide h (F) nor [K : F] for any maximal proper nonreal subfield F 

o f  K. Then the stabilizer S o f  x in Gal(K/Q) is trivial. 

PROOF. Suppose not. Let T c Gal(K/Q) be cyclic of prime order t stabiliz- 

ingx. Set F = K r, so that [K: F] -- t. Since c is not in T, F is  a nonreal field. By 

hypothesis l v~ t. We have that conormr/f(normr/F(X))= 1-I,~rx ~= tx. But 

normKzr(x) has order dividing l in H(F), so, by hypothesis, it must be 0. Thus 

tx and Ix both equal 0, so that x = 0. Contradiction. 

If we now look at Table II, pp. 150 ft. in [H], we see that for every prime p 

from 37 to 97, K has classes whose stabilizers in A are trivial. For instance, if 

p = 41, use l = 11, etc. However, I don't know how to prove this to be the case 

for an infinite number ofp .  
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3. Comparison with ordinary cohomology 

Let St denote the Steinberg module for F = GL(n, Z) tensored with F, the 

finite field with p elements. Let N = vcd(F) = n(n - 1)/2. From p. 280 of[B] 

we have the long exact sequence 

. . . .  HN_i(F, St) ~ Hi(F, F)---" HFi(F, F) ~H~._i_~(F, St) . . . .  . 

Thus immediately H ~(F, F) ~ HF(F,  F) is an isomorphism if i > N and a 

surjection if i = N. We can show that it is also an isomorphism if i = N and a 

surjection if i = N - 1. In fact, we can realize the Steinberg module using 

modular symbols as in [AR]. Using Theorem 4.1 in that paper, we easily see 

that Ho(F, S t )=  0. We hope to study further/-/j(F, St) for j > 0 in a future 

paper. 
Now let F' be a torsionfree normal subgroup of F of finite index. The 

Hochschild-Serre spectral sequence yields 

E~ "b --  Ha (F/F ', Hb(F ', F))==* Ht(F, F). 

Now we use the fact that dim Ht(F, F) >_- dim HF/(F, F) for t = N - 1, N. We 

also note that H°(F/F ', HN(F ', F ) ) =  0 by using modular symbols again and 

Borel-Serre duality as in [A]. We see immediately that ~)b =0,...,U-1 Hb(F ', F) 

cannot vanish. In further work we hope to derive stronger nonvanishing results 

on E)b =0....,N- 1 Hb( F', F) as a F/F'-module using this spectral sequence. 
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